College of Engineering

Department of Civil Engineering

CE 569 Finite Element Method in Structural Analysis

Credit and	3/3 (Lectures), 0 (Tutorials), 0 (Laboratory)		
Contact hours			
Required, or Elective	Required for a MSCE degree		
Course Description	Introduction to Finite Element Method; Direct formulation of finite element in one dimension; stiffness method for truss, beam and frame analysis; Weighted residuals; Energy and Variational principles in elasticity; Rayleigh-Ritz method; Shape functions and finite element formulation; Lagrangian and Serendipity elements; Isoparametric elements and Numerical integrations; Finite Element Implementation to 2-D Plane Stress/Plane Strain and Axisymmetric problems.		
Prerequisites or Co- requisites	CE 564 Advanced Solid Mechanics		
Course	Students completing this course successfully will be able to		
Learning Outcomes	Course Learning Outcomes	Related Program Outcomes	
	CLO1 : Recognize the principles of direct stiffness method for truss and frame structures.	K1	
	CLO2 : Recognize the Weighted Residuals; Energy Principles and Rayleigh-Ritz methods to solve simple boundary value problems	K1	
	CLO3 : Recognize the fundamentals of domain discretization, interpolation functions and the finite element formulation in one, two and three dimensional domain	K1	
	CLO4 : Recognize numerical integration and computer implementation of finite element method	K1	
	CLO5: Apply direct stiffness method to truss and frame analysis	S1	
	CLO6 : Use approximate Weighted Residual and Rayleigh-Ritz methods to solve simple boundary value problems	S1	
	CLO7 : Solve simple plane stress/plane strain problems using Finite Element method.	S1	
	CLO8 : Evaluate and model some real structural problems and predict its behavior using MATLAB and available finite element software.	C2	

Student Outcomes related to this Course	 K1. Recognize advanced engineering knowledge, concepts and techniques to identify, interpret and analyze complex and real-life engineering problems. S1. Provide solution for complex and real-life engineering problems through critical thinking and using modern engineering tools and identify its impact on social and ethical issues. C2. Design novel advanced Civil Engineering systems and evaluate its performance and effectiveness for engineering practice and its impact on society. 		
Topics Covered	List of Topics 1. Basic Concept of Finite Element Method 2. Direct formulation of finite element – Stiffness Method 3. Development of truss equations 4. Development of beam equations 5. Development of frame equations 6. Applications on truss and frame structures 7. Weighted Residual and Rayleigh-Ritz Methods 8. Virtual Work and Energy Principles 9. Shape Functions and Finite Element formulation - One-D FE formulation 10. Analyzing plane stress/plane strain structures by FEM 11. Isoparametric Elements and Numerical Integration 12. Computer implementation	Related CLOs CLO4 CLO1 CLO1 CLO1 CLO1 CLO5 CLO2 CLO2 CLO2 CLO3 CLO7 CLO6 CLO8	
Textbook(s) and Other Required Material	 Y. M. Desai, T. L. Eldho, A. H. Shah, Finite Element Method with Applications in Engineering, Pearson India., 2011. J. N. Reddy, Introduction to the Finite Element Method, 3rd edition, McGraw-Hill Education, 2006 		
Grading System	Assignments and Homework15%Presentation of Project10 %Two Midterm Exams35%Final Exam40%		
Date of Review	Dr. Yassir M. Abbas; Office 2A84/1; Email: <u>yabbas@ksu.edu.sa</u> February, 2021		